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Brief History

Brief History

I The study of holomorphic vector bundles on algebraic surfaces
effectively dates back to two papers by Schwarzenberger
(1961).

I For the case of the line bundles the classical divisor theory of
Abel-Jacobi expresses the fact that the isomorphism classes of
line bundles form an Abelian group isomorphic to Z × J
where J is the Jacobian of the curve and the integers Z
correspond to the Chern class of the line bundle (or the
degree of the divisor).

I Weil (1938) began the generalization of divisor theory to that
of matrix divisors which corresponds to the vector bundles.
The classification of vector bundles of rank n > 1 is much
harder than for line bundles partly because there is no group
structure.
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I Grothendieck (1956) showed that for genus 0 the classification
is trivial in the sense that every holomorphic vector bundle
over P1 is a direct sum of line bundles (a result known in a
different language to Hilbert, Plemelj and Birkhoff, and prior
to them to Dedekind and Weber).

I Atiyah (1957) classified all vector bundles over an elliptic
curve and made some remarks concerning vector bundles over
curves of higher genus.

I In general in order to get a good moduli space one has to
restrict to the class of stable bundles as introduced by
Mumford, otherwise one gets non-Hausdorff phenomena.
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I As we mentioned in the previous slide in 1960, the picture
changed radically when Mumford introduced the notion of a
stable or semi-stable vector bundle on an algebraic curve and
used Geometric Invariant Theory to construct moduli spaces
for all semistable vector bundles over a given curve.

I Soon after Mumford , Narasimhan and Seshadri (1965)
related the notion of stability to the existence of a unitary flat
structure (in the case of trivial determinant) or equivalently a
flat connection compatible with an appropriate Hermitian
metric.

I In fact the major breakthrough come with the discovery of
Narasimhan and Seshadri that bundles are stable if and they
arise from the irreducible (projective )unitary representation of
the fundamental group.
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I Schwarzenberger showed that every rank 2 vector bundle on a
smooth surface X is of the form π∗L, where π : X̃ −→ X is a
smooth double cover of X and L is a line bundle on X̃. In
fact the direct image π∗L is a rank two vector bundle over X.

I He then applied this construction to construct bundles on P2

which were not almost decomposable
(dim H0(X, End(E)) = 1); these turn out to be exactly the
stable bundles on P2.

I He showed further that, if V is a stable rank 2 vector bundle
on P2, then the Chern classes for V satisfy the basic
inequality c1(V )2 ≤ 4c2(V ).
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I In the years after Schwarzenberger’s papers, there were various
attempts to generalize Mumford’s definition of stability to
surfaces and higher dimensional varieties and to use this
definition to construct moduli spaces of vector bundles.

I Takemoto (1972, 1973) gave the straight forward
generalization to higher-dimensional (polarized) smooth
projective varieties that we have simply called stability here
(this definition is also called Mumford-Takemoto stability,
µ-stability, or slope stability).

I Aside from proving boundedness results for surfaces, he was
unable to prove the existence of a moduli space with this
definition (and in fact it is still an open question whether the
set of all semistable bundles forms a moduli space in a natural
way.
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I Shortly thereafter, Gieseker (1977) introduced the notion of
stability now called Gieseker stability or Gieseker-Maruyama
stability.

I Gieseker showed that the set of all Gieseker semistable torsion
sheaves on a fixed algebraic surface X (modulo a suitable
equivalence ) formed a projective variety, containing the set of
all Mumford vector bundles as a Zariski open set.

I This result was generalized by Makuyama (1978) to the case
where X has arbitrary dimension. The differential geometric
meaning of Mumford stability is the Kobayashi-Hitcbin
structure, that every stable vector bundle has a
Hermitian-Einstein connection, unique in an appropriate sense.
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I The differential geometric meaning of Mumford stability is the
Kobayashi-Hitchin conjecture, that every stable vector bundle
has a Hermitian-Einstein connection unique in an appropriate
sense. This result, the higher-dimensional of the theorem of
Narasimhan and Seshadri, was proved by Donaldson (1985)
for surfaces, by Uhlenbeck and Yau (1986) for general Kahler
manifolds and also by Donaldson (1987) in the case of a
smooth projective variety.

I The easier converse, that an irreducible Hermitian-Einstein
connection defines a holomorphic structure for which the
bundle is stable, was established previously by Kobayashi and
Lubke.
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I In summary:
In order to construct a good moduli spaces for vector bundles
over algebraic curves, Mumford introduced the concept of a
stable vector bundle. This concept has been generalized to
vector bundles and, more generally, coherent sheaves over
algebraic manifolds by Takemoto, Bogomolov and Gieseker.
The differential geometric counterpart to the stability, is the
concept of an Einstein- Hermitian vector bundle.
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I In fact Narasimhan and Seshadri proved that the Stable
holomorphic vector bundles over a compact Riemann surface
are precisely those arising from irreducible projective unitary
representations of the fundamental group.

I In this lecture I want to introduce Donaldson method which
gives different, more direct, proof of this fact using the
Differential Geometry of Connections on holomorphic bundles.

I The idea of this method essentially goes back to the famous
paper written by Atiyah and Bott ( Yang-Mills equation over
Riemann surfaces, 1983) in which the result of Narasimhan
and Seshadri is used to calculate the cohomology of moduli
spaces of stable bundles.
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I Let M be a compact Riemann surface with a Hermitian
metric. If E is a vector bundle over M define:

µ(E) = degree(E)/rank(E),

where the degree is the Chern class of E. A holomorphic
bundle E is defined to be stable if for all proper holomorphic
sub-bundles F < E we have :

µ(F) < µ(E)
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I The Main Theorem. An indecomposable holomorphic bundle
E over M is stable if and only if there is a unitary connection
on E having constant central curvature ∗F = −2πiµ(E).
Such a connection is unique up to isomorphism.

I Note. If deg(E) = 0, these connections are flat and it can be
easily shown that they are given by unitary representations of
the fundamental group. In the general case it is also easy to
prove the equivalence of this form of the result with the
statement of Narasimhan and Seshadri (Atiyah and Bott).
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I Let M be a general manifold and let E be a C∞ complex
vector bundle on M of rank r. Recall that a connection on E
is a C-linear map D from C∞ sections of E to sections of
A1(E) = E ⊗A1(M), where A1(M) is the C∞ 1-forms on
M satisfying the Leibnitz rule:

I For all sections s of E and C∞ functions f on M ,

D(fs) = fDs + s⊗ df

It follows that the difference of two connections is a C∞

1-form with coefficients in EndE, and in fact the space of all
connections is an affine space for A1(EndE).
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I There is a natural extension of D to an operator from
Ap(E) −→ Ap+1(E), where Ap(E) is the vector bundle of
p-forms with coefficients in E, by requiring the graded Leibniz
rule:

D(φ⊗ s) = dφ⊗ s + (−)pφ⊗Ds

I Using this extension we define the curvature R of D to be

R = DoD : A0(E) −→ A2(E).

It can be easily checked that R is A0-linear. Hence, R is a
2-form on M with values in End(E) or equivalently R is a
C∞ section of A2(End(E)) = A2(M)⊗ End(E).
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I Choosing a local basis s1, ..., sr of C∞ sections, we can
identify a section s with a vector of functions and we can
write Ds = ds + As, where A is a matrix of 1-forms, called
the connection matrix.

I In this case the curvature R = D2 is locally given by the
matrix FA = dA + A ∧A, which transforms as a section of
A2(EndE).

I The vector bundle E (or more precisely the pair (E,D)) is
flat if D2 = 0. As a corollary of the Frobenius theorem, if E is
flat and M is simply connected, then E is trivialized by global
sections s1, ..., sr such that Dsi = 0 for all i.
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I More generally, for an arbitrary manifold M , flat vector
bundles E correspond to representations of π1(M, ∗) into
GL(r, C).

I More precisely, if E is a vector bundle with a flat connection
D. Let x0 be a point of M and π1 the fundamental group of
M with reference point x0. Since the connection is flat, the
parallel displacement along a closed curve γ starting at x0

depends only on the homotopy class of γ.

I So the parallel displacement gives rise to a representation

ρ : π1(M, ∗) −→ GL(r, C)

The image of ρ is the so called holonomy group of D.
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I Conversely, given a representation ρ : π1(M, ∗) −→ GL(r, C),
we can construct a flat vector bundle E by setting

E = M̃ ×ρ Cr

, where M̃ is the universal covering of M and M̃ ×ρ Cr

denotes the quotient of M̃ × Cr by the action of π1 given by

γ : (x, v) ∈ M̃ × Cr 7−→ (γ(x), ρ(γ)v) ∈ M̃ × Cr

The vector bundle defined by above is said to be defined by
the representation ρ.
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I In Summary one can say that:
For a complex vector bundle E of rank r over M , the
following two conditions are equivalent:

1. E admits a flat connection D,
2. E is defined by a representation ρ : π1 −→ GL(r, C).

I Similarly a connection D on a vector bundle E over M is
called projectively flat if the curvature
R = DoD : A0(E) −→ A2(E) which we saw that it can be
regarded as an element in A2(End(E)) = A2(M)⊗ End(E)
has the form R = αIE where α is a 2-form on M and IE is
the identity map in the group End(E).
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I In the cases of interest, E will have a Hermitian metric 〈., .〉,
and D will be compatible with the metric in the sense that

〈Ds1, s2〉+ 〈s1, Ds2〉 = d〈s1, s2〉

I If si is an orthonormal basis with respect to the inner product,
then the connection matrix A is skew-Hermitian, or in other
words it lies in the Lie algebra u(r) of the unitary group U(r).
We say that the connection A is unitary or Hermitian.

I In this case, the curvature, computed in a local orthonormal
frame, is a skew-Hermitian matrix of 2-forms. The flat vector
bundles E whose connections are compatible with a Hermitian
metric essentially correspond to representations of π1(M, ∗)
into U(r) rather than into GL(r, C).
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I If E is a Hermitian vector bundle and D is a connection which
is compatible with the metric on E, then we can consider the
characteristic polynomial:

det(
i

2π
D2 + tid) =

r∑
k=0

ck(E)tr−k

I Here the coefficients ck(E) turn out to be closed forms of
degree 2k representing the Chern classes of the vector bundle
E.

I For example, c1(E) = (i/2π)Tr(D2). Note that, if D is flat,
then ci(E) = 0 for all i > 0.
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I suppose that M is a complex manifold (in our case of
discussion Riemann surface), so that d = ∂ + ∂. Let Ωp,q(M)
be the vector bundle of forms of type (p, q), and, for a
complex vector bundle E, define Ωp,q(E) similarly.

I If E is holomorphic, then ∂ is well defined on C∞ sections of
E, and we say that the connection D is compatible with the
complex structure, if

π0,1(D) = ∂

, where π0,1 : A1(E) −→ Ω0,1(E) is the projection induced
from the projection of the l-forms on M to the, (0, l)-forms.

I In this case π0,2(D2) = 0 , in other words, the curvature has
no component of type (0, 2).
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I Conversely, if E is a C∞ vector bundle and D is a connection
on E such that π0,2(D2) = 0, then there exists a unique
holomorphic structure on E for which D is a compatible
connection.

I Every holomorphic vector bundle E with a Hermitian metric
has a unique unitary connection D which is compatible with
the complex structure. It is referred to D as the compatible
unitary connection associated to the metric.

I In this case, since ∂
2 = 0, D2 has no component of type

(0, 2), and since it is skew-Hermitian, it has no
(2, 0)-component either. Thus, the curvature D2 lives in Ω1,1.
It follows that the Chern classes Ck(E) are represented by real
forms of type (k, k).
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Connections on Complex Vector Bundles

I Definition. If E is a C∞ vector bundle over a Riemann
surface X a unitary connection A on E gives an operator
dA : Ω0(E) −→ Ω1(E) which has a (0, 1) component
∂A : Ω0(E) −→ Ω0,1(E) and this defines a holomorphic
structure EA on E (Because according to a theorem By Atiyah
and Bott there are sufficiently many local solutions of the
elliptic equation ∂A(s) = 0 ).

I Conversely if E is a Holomorphic structure on E there is a
unique way to define a unitary connection A such that
E = EA. So there is one to one correspondence between
unitary connections on E and holomorphic structure on E
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Gauge Group

Gauge Group

I A Connection on E induces a connection on all associated
bundles, in particular, on the bundle of Endomorphisms End
E.

I The gauge group G of unitary automorphisms of E acts as a
symmetry group on the affine space A of all unitary
connection on E by: u(A) = A− dAuu−1 , u ∈ G and A ∈ A.
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I The action also extends the complexification GC = group of
general linear automorphisms of E. Connections define
Isomorphic holomorphic structure precisely when they lie in
the same GC orbit. So the set of GC orbits parametrize all the
holomorphic bundles of the same degree and rank as E (there
are no further topological invariants of bundles over X).
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I For a holomorphic bundle E we write O(E) for the
corresponding orbit of connections. Each connection A has a
Curvature F (A) ∈ Ω2(End) and

I F (A + a) = F (A) + dAa + a ∧ a.

I The plan of the proof. The case of line bundles is an easy
consequence of the Hodge theory . Suppose inductively that
the result has been proved for bundles of lower rank, then we
choose a minimizing sequence in O(E) for a carefully
constructed functional J in terms of the curvature and extract
a weakly convergent subsequence.
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The Plan of Proof

I There are two possibilities:

1. The limiting connection is in O(E) and we deduce the
result by examining small variations within the orbit O(E)
or

2. The limiting connection is in another orbit O(F) and we
deduce that E is not stable, a contradiction.
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The Yang-Mills Functional

I Definition of the functional J . The trace norm is defined on
n× n Hermitian matrices by

ν(X) = Tr(X∗X)1/2 =
n∑

i=1

|λi|,

I where {λi} are the eigenvalues of X. Applying ν in each fiber
we define, for any smooth self-adjoint section s in Ω0(EndE)

N(s) = (
∫

M
ν(s)2)1/2
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I Then N is a norm equivalent to the usual L2 norm and so
extend to the L2 cross sections. Now for an L2

1 connection A
define the functional J :

J(A) = N(
∗F
2πi

+ µ.1),

where µ = µ(E).

I Thus J(A) = 0 if and only if the connection is of
the type required by the theorem.
For bundles of rank two and degree zero J is essentially the
Yang-Mills functional ||F ||L2 introduced by Atiyah and Bott.
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A Theorem on Convergence of connections

I Proposition(Uhlenbeck, 1981.) Suppose that Ai ∈ A is a
sequence of L2 connections with ||F ||L2(Ai) bounded. Then
there are a subsequence {i′} ⊂ {i} and L2 gauge
transformations ui′ such that ui′(Ai′) converges weakly in L2.
The main ingredient for the proof of the following key lemma
is the above result by Uhlenbeck.

I The Key lemma. Let E be a holomorphic bundle over X.
Then either inf J |0(E) is attained in 0(E) or there is a
holomorphic bundle F � E of the same degree and rank as E
and with inf J |0(F) < inf J |0(E) ; Hom(E ,F) 6= 0.
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Sketch of the Proof of the Key Lemma

I Pick a minimizing sequence Ai for J |0(E) Since N is
equivalent to the L2 norm, we have ||F (A)||L2 bounded and
can apply the Uhlenbeck’s theorem to deduce that, Ai → B
weakly in L2 and J(B) < lim inf J(Ai) = inf J |0(E) .

I Now since B defines a holomorphic structure EB, the key
lemma will follow if we show Hom(E , EB) 6= 0.

I To see this, define for any two connections A,A′ a connection
dAA′ , on the bundle Hom(E,E) = E∗ ⊗ E built from the
connection A on the left hand factor and A′ on the right, with
a corresponding

∂AA′ : Ω0(Hom(E,E)) −→ Ω0,1(Hom(E,E))

I Thus solutions of ∂AA′(s) = 0 (which exist by ellipticity of ∂)
corresponds exactly to elements of Hom(EA, EA′).
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The behavior of Curvature

I Curvature and holomorphic extension.
The strategy of the proof is that if the bundle E is stable the
second alternative of the key lemma does not occur. In
general if α : E → F is a holomorphic map of bundles over
M , according to a result by Narasimhan there are proper
extensions and a factorization:

0 −−−−→ P −−−−→ E −−−−→ Z −−−−→ 0y α

y β

y
0 ←−−−− N ←−−−− F ←−−−− M ←−−−− 0.

with rows exact,

I rank(Z)= rank(M) and detβ 6= 0 , degZ ≤ degM.
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The Behavior of Curvature

I Some generalities: If we have any exact sequence of
holomorphic bundles 0→ S → T → U → 0 then any unitary
connection A on T has the shape:

A =
(

AS β
−β∗ AU

)

I where AS , AU are connections on S,U and β in Ω0,1(U∗⊗S).
The corresponding curvature matrix has the decomposition:

F (A) =
(

F (AS)− β ∧ β∗ dβ
−dβ∗ F (AU )− β∗ ∧ β

)

I in which the quadratic term have a definite sign. In fact this
is a principle that curvature decreases in holomorphic
subbundles.
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The Behavior of the Yang-Mills Functional

I Lemma 1- If F is a holomorphic bundle over M which can be
expressed as an extension : 0→M→ F → N → 0 and if
µ(M) ≥ µ(F) then for any unitary connection A on F we
have :

J(A) ≥ rkM(µ(M)− µ(F)) + rkN (µ(F)− µ(N )) := J0

I Lemma 2. Suppose that E is a stable holomorphic bundle and
make the inductive hypothesis that the main theorem has
been proved for bundles of lower rank. If E can be expressed
as an extension 0→ P → E → Z → 0 (so from the definition
of stability we have: µ(P) < µ(E) < µ(Z)), then there is a
connection A on E with

J(A) < rkP(µ(E)− µ(P)) + rkZ(µ(Z)− µ(E)) := J1



Differential Geometry of Stable Vector Bundles

The Behavior of the Yang-Mills Functional

The Behavior of the Yang-Mills Functional

I Lemma 1- If F is a holomorphic bundle over M which can be
expressed as an extension : 0→M→ F → N → 0 and if
µ(M) ≥ µ(F) then for any unitary connection A on F we
have :

J(A) ≥ rkM(µ(M)− µ(F)) + rkN (µ(F)− µ(N )) := J0

I Lemma 2. Suppose that E is a stable holomorphic bundle and
make the inductive hypothesis that the main theorem has
been proved for bundles of lower rank. If E can be expressed
as an extension 0→ P → E → Z → 0 (so from the definition
of stability we have: µ(P) < µ(E) < µ(Z)), then there is a
connection A on E with

J(A) < rkP(µ(E)− µ(P)) + rkZ(µ(Z)− µ(E)) := J1



Differential Geometry of Stable Vector Bundles

The Behavior of the Yang-Mills Functional

The Behavior of the Yang-Mills Functional

I Lemma 2. Suppose that E is a stable holomorphic bundle and
make the inductive hypothesis that the main theorem has
been proved for bundles of lower rank. If E can be expressed
as an extension 0→ P → E → Z → 0 (so from the definition
of stability we have: µ(P) < µ(E) < µ(Z)), then there is a
connection A on E with

J(A) < rkP(µ(E)− µ(P)) + rkZ(µ(Z)− µ(E)) := J1

I The above Lemma is somehow stronger than the Lemma 1
because it is exploiting the special properties of the functional
J
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I Proof of the Main Theorem According to the inequality
in the lemma 1 if E is a bundle with a connection of the type
required by the main theorem i.e. J = 0 then E must be
stable.

J(A) = 0 ≥ rkM(µ(M)− µ(E)) + rkN (µ(E)− µ(N ))

I Conversely if E is stable and the theorem has been proved for
bundles of lower ranks then inf J |O(E) is attained in O(E). For
if not, the key lemma constructs a bundle F with
degF = deg(E), rankF = rankE ,Hom(E ,F) 6= 0 and
infJ |O(E) ≥ infJ |O(F).
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I Now in the diagram

0 −−−−→ P −−−−→ E −−−−→ Z −−−−→ 0y α

y β

y
0 ←−−−− N ←−−−− F ←−−−− M ←−−−− 0.

we have µ(M) ≥ µ(Z) ≥ µ(E) = µ(F).

I So we can apply lemma 1 to the bottom row of the diagram
to deduce

infJ |O(F) ≥ J0

and lemma 2 to the top row to deduce

infJ |O(E) ≤ J1
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I But rkZ = rkM, rkP = rkN ,degZ ≤ degM,degP ≤ degN

I implies that J1 ≤ J0 and we obtain

infJ |O(E) ≤ J1 ≤ J0 ≤ infJ |O(F)

a contradiction, so inf J |O(E) is attained in O(E).
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I Thus The minimum of the functional J on the orbit O(E) is
attained in this orbit , say, at the connection A.

I Now by an infinitesimal argument one can easily show that at
the connection A we should have J(A) = 0 as it was desired.
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I This method can be applied very naturally to the problem of
stability of parabolic bundles over marked Riemann surfaces.
In Lie theory (or random matrix theory) there was an old
problem about determining the spectrum of the product of
two fixed conjugacy classes chosen randomly from a compact
Lie group, this is the well known ”support problem”.

I The surprising fact is that the support problem can be
described in term of the stability property of a special complex
vector bundle over compact Riemann surface (generally with
marked points).
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I This relation that for solving a problem in Lie theory we have
to go out and use the concept of stability in the realm of
differential geometry motivates us to ask whether one can
solve the support problem in the Lie group for example
G = SU(n) in term of the Lie theory of this group.

I Question : What is a good counterpart of the notion of
stability in differential geometry in the realm of Lie theory.
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End

Thank You for Your Attention
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